Plasma nano-coating under normal pressure creates new functions on surfaces

Inès Melamies

Bisamweg 10 33803 Steinhagen Germany Phone: +49 5204 996 00 Fax +49 5204 996 033 mail@plasmatreat.de www.plasmatreat.de

An atmospheric plasma coating technology which has already proved successful in the automotive, plastics and solar industry has now set its sights on the medical industry. It can bring about microfine cleaning, disinfection and sterilization, and apply functional coatings. Diffusion barriers and antifriction coating can be generated and antimicrobial coatings can be deposited.

The topic in question is «PlasmaPlus», a plasma process which for the first time allows for functional nano-coating of material surfaces in continuous production under normal air conditions. The process is based on the «Openair» plasma jet technology developed by Plasmatreat GmbH in Steinhagen, which has been used throughout the world for almost 20 years. This system is characterized by a threefold action: it activates surfaces by selective oxidation processes, discharges them at the same time and brings about microfine cleaning of materials such as metals, plastics, glass and ceramics. A particular feature of this technology is that the plasma is potential-free, which greatly increases the range of possible applications. The intensity of the

Fig. 1: At the heart of process is a plasma nozzle which conceals a complex coating system allowing the deposition of locally selective nano-coatings (Photo: Plasmatreat)

plasma is so high that processing speeds of several 100 m/min can be achieved. It also offers economic benefits: the jet systems are compatible with robotic systems and are designed for in-line integration by the user, i.e. they can be integrated directly into a new or existing production line.

Atmospheric plasma coating

Until recently, plasma polymerisation could only be carried out under low pressure in a vacuum chamber. Together with the Fraunhofer institute IFAM in Bremen (Germany), Plasmatreat has spent the last few years developing a much simpler, quicker and more cost-effective process for which the company was granted the German Industry Award 2012 in the «Production and Mechanical Engineering» category.

At the heart of the process is a plasma nozzle which conceals a complex coating system (Fig. 1). The process is environmentally friendly, needing nothing other than compressed air, electricity and for layer deposition the so called precursor which is added to the plasma. A variety of different materials including metal, glass, plastics and ceramics can be coated by varying the chemical composition of the precursor and delivering it directly to the plasma. The precursor is exited within the plasma or respectively fragmented and is deposited on the material, where it forms a cross-linked layer.

Apart from the inline-use, the main advantage of this technology compared with other systems is the locally selective coating technique. The use of a plasma nozzle enables locally selective coatings to be applied in a highly targeted manner which makes efficient use of resources. Processes can be so accurately controlled that layers which confer different functions, such as corrosion protection, adhesion, or even release properties, can be applied using the same nozzle. Furthermore, only very small quantities of coating material are required. A big advantage also is the extremely high speed by which a coating

can be created. While the low-pressure plasma technology, frequently used in medicine, takes one to two minutes to form a 100 nm coating thickness, a deposition layer can be achieved in milliseconds with the new coating technology.

Research an application in medicine

Manufacturing processes in medical engineering demand standards that far outweigh those of most other industries. Surfaces must be absolutely clean, or even sterile, before they can be further processed or used. Furthermore, pre-treatment processes in medical technology must be very reliable and precisely reproducible. The plasma process described here meets these requirements.

Self-cleaning coatings

The «PlasmaPlus» process can already be used to deposit photocatalytically-active titanium-dioxide coatings. When exposed to sunlight and moisture, these coatings have a self-cleaning and germicidal effect. This application is used to prevent the formation of biofilms on all surfaces that come in contact with light or are light conducting surfaces. The process is therefore of particular interest for coating medical and sanitary products since it allows manual cleaning intervals to be extended or omitted altogether.

Antimicrobial coatings

A further focus of research is the deposition of antimicrobial coatings containing silver (Fig .2). Within APASI, a joint project funded by the German Federal Ministry of Education and Research, the Fraunhofer IFAM and Plasmatreat have set themselves the task of producing antimicrobial plasma coatings. The aim is to bind silver nano particles to an organosilicon layer. Germs on the surface are killed by the continuous release of silver ions. The silver nano particles are not added externally, as with other coating processes, but generated directly in the nozzle and deposited in situ, where they bind to the surface of the layer (Fig. 3). The new nozzle design enables layers containing silver, and even copper, to be deposited in a simple and cost-effective single-step process.

Coatings of the kind are not new basically. The innovative aspect of this research project is the deposition process. Until lately such coatings could only be created in costly chemical or in low pressure plasma processes. The new atmospheric plasma polymerisation offers an environmentally friendly and efficient solution which is easy to integrate inline.

Anti-friction coatings

The rubber seals of syringe plungers are often subject to the «stick-slip» effect, the jerky motion that occurs when two surfaces slide over each. To prevent this and make it easier to eject the syringe, the new plasma polymer anti-friction coating has already been successfully applied to seals. The frictionreducing plasma coating ensures that the rubber surface glides smoothly (Fig. 4).

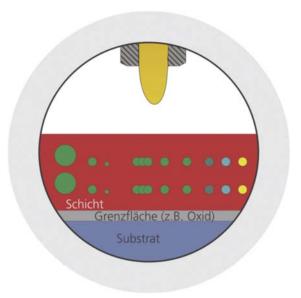


Fig. 2: Structure of an antimicrobial plasma coating from the APASI project (Photo: Fraunhofer IFAM)

Barrier layers

Barrier or diffusion layers produced with AP plasma are an important research goal of the plasma company. Barrier layers can be applied to various plastics and constitute an effective barrier against carbon dioxide, oxygen and water. In medical packaging barrier layers protect the active ingredients and flavourings, and preserve the quality and integrity of the contents. With the aid of highly cross-linked plasma polymer layers, the process can already create oxygen diffusion barriers which achieve a BIF (Barrier Improvement Factor) of up to 5. Typical materials include polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET).

Adhesion promoting layers for hybrid components

The plasma process has also improved adhesion between rubber-to-metal and plastic-to-metal bonding in hybrid injection moulding. This involves applying nano-coatings with active adhesion to the metal surface, then moulding the plastic compo-

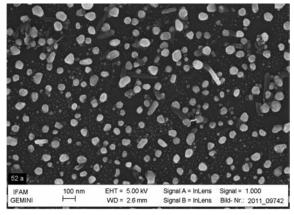


Fig .3: The SEM image (200'000 x magnification) shows silver nano-particles sputtered by atmospheric plasma to create an antimicrobial coating (Photo: Fraunhofer IFAM)

Plasma Technology

Fig. 4: A fiction-reducing plasma coating on the rubber seal is applied in order to prevent the slip-stick effect and to make it easier to push out the syringe (Photo: Plasmatreat)

nents onto the surface. The deposition of adhesion-promoting coatings with this plasma process is a technique that will allow solvent-based primers to be entirely replaced in the future.

Conclusion

Nanocoating with "PlasmaPlus" atmospheric pressure plasma enables substances tailored specifically to the application to be deposited deep into the nanostructure of the material surface. This technique creates a highly effective functional coating which confers completely new surface characteristics on the materials. Manufacturing products with selectively functionalized surfaces opens up a completely new dimension in innovation capability for companies working in the field of medical engineering.

OBERFLÄCHEN POLYSURFACES